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In this paper we compare the performance of different methods for reconstructing inter-
faces in multi-material compressible flow simulations. The methods compared are a mate-
rial-order-dependent Volume-of-Fluid (VOF) method, a material-order-independent VOF
method based on power diagram partitioning of cells and the Moment-of-Fluid method
(MOF). We demonstrate that the MOF method provides the most accurate tracking of inter-
faces, followed by the VOF method with the right material ordering. The material-order-
independent VOF method performs somewhat worse than the above two while the solu-
tions with VOF using the wrong material order are considerably worse.

� 2009 Published by Elsevier Inc.
1. Introduction

Accurate simulation of multi-material and multi-phase flows requires effective tracking and management of material
interfaces. Due to their ability to strictly conserve the mass of different materials, volume-of-fluid (VOF) methods using
interface reconstruction are widely used in such simulations [1–4]. Originally developed by Hirt and Nichols [5], VOF meth-
ods do not explicitly track interfaces but rather track the volume of each material. The interface between materials is first
reconstructed in cells based on the material volume fractions. Then the volume fluxes of each material between cells are esti-
mated from the geometric reconstruction and finally, the fluxes are used to compute new volume fractions in each cell, in
preparation for the next time step.

More recently, an interface tracking method has been devised based on tracking both the volume (zeroth moment) and
centroid (ratio of first and zeroth moment) of the materials in mesh cells. This new method, called the Moment-of-Fluid
(MOF) method [6], reconstructs interfaces more accurately than VOF methods and is able to resolve interfacial features
on the order of the local mesh size whereas VOF methods do poorly in resolving features smaller than 3–4 times the local
mesh size. In this paper, we present a comparative study of different VOF methods and the MOF method for complex com-
pressible flow simulations involving more than two materials. It is organized as follows: in Section 2, we present a brief over-
view of the common material order-dependent VOF methods. We describe the basic principle of each method and focus
mainly on the Youngs’ VOF method, which is implemented in most multi-material codes. We describe the problems with
choosing the correct material ordering for such methods. In Section 3, we describe the order independent VOF method based
on the power diagrams. In Section 4, the MOF material reconstruction method is described. The slope of the material inter-
face is not determined from the volume fractions of the neighboring cells, but from the material centroids of the particular
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cell. In Section 5, we briefly describe all steps of the ALE algorithm implemented in our research multi-material code. We
focus mainly on the propagation of the material centroids needed for the MOF material reconstruction during the Lagrangian
and remapping steps of the algorithm. Coupling of the material reconstruction methods with a multi-material ALE code is
described. Section 6 is the key part of the paper. It includes comparison of the described material reconstruction methods
in the context of particular multi-material hydrodynamic simulations including typical phenomena appearing in real prob-
lems – vortex, explosion, and a shock wave-material interaction. All numerical examples include more than 2 materials to
emphasize key properties of each method. Finally, we conclude the paper and review the material reconstruction methods in
Section 7.

2. VOF methods with nested dissection (VOF-PLIC)

Early VOF methods used a straight line aligned with a coordinate axis to partition the cell according to the material vol-
ume fractions. This is often referred to as the simple line interface calculation (SLIC) originally due to Noh and Woodward [7].
Youngs [8,9] extended the method to permit the material interface to have an arbitrary orientation within the cell (called
PLIC or Piecewise Linear Interface Calculation by Rider and Kothe [3]). In Youngs’ method, the outward normal of the inter-
face separating a material from the rest of the cell is taken to be the negative gradient of the ‘‘volume fraction function”. The
‘‘volume fraction function” is treated as a smooth function whose cell-centered values are given by the cell-wise material
volume fractions. The interface is then defined by locating a line with the prescribed normal that cuts off the correct volume
of material from the computational cell.

Gradient based methods are in general first order accurate although they may exhibit near second order accuracy on reg-
ular Cartesian grids. However, there are extensions that make the reconstruction second-order accurate for general grids. The
LVIRA technique by Pilliod and Puckett [10] tries to find an extended straight line interface that cuts off the exact volume
fraction in the cell of interest and minimizes the error in matching the volume fractions in the surrounding cells. LVIRA uses
a minimization procedure with a gradient-based normal as the initial guess. An alternative is the interface smoothing pro-
cedure based on Swartz’s quadratically convergent procedure [11,14] for finding a straight line that cuts off the right volume
fractions from two arbitrary planar shapes.1 Mosso et al. [14] and Garimella et al. [15] have used this procedure in slightly
different ways to devise interface smoothing procedures. For a given mixed cell, Garimella et al. compute a straight line cutting
off the right volume fractions from the cell and each of its mixed cell neighbors by the Swartz method. The normals of these
different straight lines are then averaged to give a smoothed interface normal for the cell.

VOF-PLIC techniques have been successfully used to accurately simulate two-phase (or two-material) flows and free-sur-
face flows in two and three dimensions. However, their application to flows involving three or more materials that come
closer than the mesh spacing and even form junctions has been mostly ad hoc. Examples of such phenomena are flows of
immiscible fluids (e.g. oil–water–gas), inertial confinement fusion, armor–antiarmor penetration and powder metallurgical
simulation of multiple materials.

The most common extensions of PLIC to cells with more than two materials (multi-material cells)2, is to process materials
one by one leading to a reconstruction that is strongly dependent on the order in which the materials are processed. Of the dif-
ferent ways to sequentially partition a cell, one of the most general and accurate ways is called the ‘‘nested dissection” method
[6], where each material is separated from the others in a specified order. In the method, a pure polygon (or polyhedron) repre-
senting the first material is marked out from the cell, leaving a mixed polygon for the remaining materials. Then, a polygon rep-
resenting the second material is marked out from the mixed polygon and the process continues until the last material is
processed. This method is illustrated in Fig. 1 and described in detail in [6,16,17]. Clearly, such an order dependent method
can easily place materials in wrong locations in the cells if the chosen order of processing is incorrect. Even if the order of the
materials is right, the computation of the interface normals in multi-material cells is ambiguous. In computing the normal as
the negative gradient of the volume fraction function of a material, it is unclear whether one should use the volume fractions
with respect to original cells or the part of the cells remaining after the earlier materials have been removed. It is also not clear
where these function values should be centered – at the center of the original cell or the center of the unprocessed part of the cell.

The most significant adverse effect of these incorrect reconstructions, however, is in material advection in flow simula-
tions. An improper material ordering may result in materials being advected prematurely (or belatedly) into neighboring
cells. This can further lead to small pieces of the material getting separated and drifting away from the bulk of the material
(sometimes known as ‘‘flotsam and jetsam”). The effect of material ordering is illustrated clearly in an example from [18] in
which a four-material disk (with each material occupying one quadrant of the disk) is advected diagonally for 30 time steps.
The results in Fig. 2 show dramatically different results with different material orderings and a complete loss of the cross-
shaped interface.

The most common and trivial way to deal with the material order dependency is to select the ‘‘correct” global ordering for
a problem. However, this is obviously problematic if the same materials must be processed differently in different parts of
the mesh or if the material configurations change as the problem advances in time. Also, some interface configurations may
1 This is commonly known as the ‘‘ham-sandwich” or Steinhaus problem [12,13].
2 In a strict sense, any cell with more than one material is a multi-material cell. However, we choose to distinguish two material cells from cells with more

than two materials by calling the latter multi-material cells. The reason for this distinction is that interface reconstruction for one material is (in the case of VOF
methods) complementary to the second in a cell with two-materials while it is not for more than two materials.



Fig. 1. Nested dissection interface reconstruction for three materials in the order ACB: (a) the first (A) material is removed leaving a smaller available
polygon, (b) the second (C) material is removed from the available polygon, (c) the remaining available polygon is assigned to material B, (d) the resulting
partitioning of the computational cell. (e)–(g) show the same procedure but the materials are processed in a different (CAB) order leading to a different
reconstruction (h).

Fig. 2. Four material disk at time T ¼ 0:5 translated from the initial position (0.2,0.2) with 30 time steps at a velocity of (1,1) on 32 � 32 mesh of the ½0;1�2

domain. Material reconstruction done by several methods – MOF, VOF with power diagrams, and Youngs’ VOF. The material orderings for Youngs’ are
indicated in the figure.

2434 M. Kucharik et al. / Journal of Computational Physics 229 (2010) 2432–2452
not be reproducible by any particular order, such as the four material example referred to above. While there has been some
work on automatically deriving material order, most of these attempts assume a layered structure for the interface [14,19]
and cannot handle multiple materials coming together at a point very well.

3. VOF methods with power diagram reconstruction (VOF-PD)

Recently, Schofield et al. [18] developed a new VOF-based reconstruction method that is completely material order inde-
pendent. This method, called the Power Diagram method for Interface Reconstruction, does not sequentially carve off mate-
rials from a cell using straight lines. Rather it first locates materials approximately in multi-material cells and then partitions
the cell simultaneously into multiple material regions using a weighted Voronoi decomposition thereby avoiding the order
dependence problem. We describe this procedure below referring to it as the VOF-PD method.

In the first step of the VOF-PD method, approximate locations or ‘‘centroids” of the materials in a cell are determined
using the volume fractions of the materials in the cell and its neighbors. This is accomplished by treating the volume frac-
tions of each material in the cell and its neighbors as pointwise values of a pseudo-density function. The pointwise values of
this pseudo-density function are then used to obtain a linear reconstruction of the function along with application of a lim-
iter restricting the minimum and maximum values to 0 and 1, respectively. Then the linear approximation of this pseudo-
density function is used to derive an approximate centroid for the material in the cell. While this method does not locate the
material centroids very accurately in an absolute sense, it does locate the materials quite well relative to each other.

In the second step of the procedure, the approximate centroids of the materials are used as generators for a weighted
Voronoi or Power Diagram subdivision [20,21] of the cell. The weights of the different generators are chosen iteratively such
that the volume fractions of the different Voronoi polygons truncated by the cell boundary match the specified material vol-
ume fractions exactly.
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The authors have shown that this procedure is in general first-order accurate and for two materials, exactly reproduces a
gradient-based subdivision of the cell. They have also presented a smoothing procedure for the power diagram-based sub-
division which results in a second-order accurate reconstruction but slows the procedure down considerably unless applied
only to cells with more than two materials.

4. Moment-of-fluid (MOF) method

While VOF methods track only volume fractions of the individual materials in mesh cells, the recently developed
Moment-of-fluid (MOF) method [6] tracks both the volume (zeroth moment) and centroid (ratio of first and zeroth
moment) of the materials in the cells. By tracking both moments the MOF method reconstructs the material interface
with higher accuracy than VOF methods and is able to resolve interfacial details on the order of the local mesh size. In
contrast, VOF methods can only resolve details on the order of 3–4 times the local mesh size. Also, since a line can be
determined by only two parameters (an intercept and a slope), the linear interface in a cell is actually over-determined
by specifying the volume fraction and centroid. This implies that MOF can perform an exact reconstruction of a linear
interface and a second-order reconstruction of a smoothly curved interface in a cell without the need for information from
neighboring cells.

Given the volume fraction and centroid of a material in a cell, the MOF reconstruction method computes a linear interface
such that the volume fraction of the material is exactly matched and the discrepancy between the specified centroid and the
centroid of the polygon or polyhedron behind interface is minimized. This is done by an optimization process with the slope
of the linear interface (or its angle with respect to the x-direction) as the primary variable. For any given slope, the intercept
of the line is determined uniquely by matching the specified material volume fraction.

The MOF reconstruction is also typically implemented as a nested dissection method where materials are carved off from
a cell sequentially thereby making it an order-dependent problem. However, it is possible to combinatorially determine the
correct sequence of material reconstructions in MOF by reconstructing with all possible sequences and choosing the
sequence which leads to the least discrepancy between the reconstruction and specified centroids. Although the number
of possible sequences grows as the factorial of the number of materials, the computational overhead of this approach is
tolerable as each cell contains only a small number of materials for most problems. Also, more complex configurations such
as 4 materials coming together at a point can be reconstructed by recursively reconstructing the interface between groups
of materials first and then resolving the interfaces between materials in each group. Again, due to the small number of
materials in a cell, this does not impose a significant computational penalty. Such a technique has proved very effective
in accurately reconstructing multi-material interfaces.

Further details of the MOF technique of interface reconstruction are given in [6,17].

5. Compressible flow simulation with VOF and MOF reconstructions

Here we briefly describe an arbitrary-Eulerian–Lagrangian (ALE) compressible flow simulation algorithm used to compare
the effects of the VOF and MOF reconstruction techniques. Since the purpose of this paper is to compare the different
interface reconstruction methods, we deliberately do not provide many details of the ALE code to avoid overwhelming
the discussion. We believe the general conclusions of this comparative study will hold regardless of the ALE code used.

Our 2D research multi-material ALE code (RMALE) has a standard structure shown in Fig. 3.
It consists of three main components – multi-material Lagrangian solver, mesh untangling and smoothing method, and a

flux-based multi-material remapper. The Lagrangian step is repeated, until the mesh smoothing becomes necessary (for
example, due to poor mesh quality, or a given number of hydro steps being completed). When mesh smoothing is applied
to improving the mesh quality it is followed by a remapping step conservatively interpolating all quantities on the new
mesh. Then, a new Lagrangian cycle can begin. The entire code employs a staggered Mimetic Finite Difference discretization
[22], where scalar fluid quantities (density, mass, pressure, internal energy) are located inside mesh cells, and vector quan-
tities (positions, velocities) on mesh nodes. The multi-material ALE framework allows more than one material inside one
computational cell, where the amount of each material is defined by its volume and mass fractions, and if we use MOF,
the relative location of each material is defined by the material centroid. In each multi-material cell, scalar quantities are
defined separately for every material, but the variables in the primary equations are the average cell quantities. Contrary
to a single-material approach, our multi-material Lagrangian step and remapper must update not only all fluid quantities,
but also material volume and mass fractions, and material centroids.

The Lagrangian solver solves the following set of hydrodynamic equations
1
q

dq
dt
¼ �r �w; q

dw
dt
¼ �r � p; q

de
dt
¼ �pr �w ð1Þ
representing conservation of mass, momenta in both directions, and total energy, completed by the ideal gas equation of
state p ¼ ðc� 1Þqe. Here, q is the fluid density, w is the vector of velocities, p is the fluid pressure, e is the specific internal
energy, and c is the ratio of specific heats. The solver is based on evaluation of several types of forces affecting each mesh
node [22] – zonal pressure force representing forces due to the pressure in all neighboring zones, artificial viscosity force



Fig. 3. Flowchart of our research multi-material code. Material reconstruction is hidden in the update of material centroids at the end of the Lagrangian
step.
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Fig. 4. Initial conditions for static triple point problem. Materials are shown in different colors, and values of ratio of specific heats c, density q, pressure p,
and velocity u are listed.
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(edge viscosity [23] is used in the examples), and anti-hourglass stabilization force introduced in [24], suppressing some
unphysical modes in the mesh motion. The viscosity forces in the mixed cells are computed from the average fluid quantities,
and the appropriate heating is redistributed among the particular materials according to their mass fractions. For volume
fraction update and common pressure construction, a multi-material closure model is applied [25]. In our numerical exam-
ples, the simplest model employing the constant volume fractions (equal strain model [1]), is used. The last part of the
Lagrangian step is a method for updating the material centroids. In the first step, we advect them by keeping their parametric
coordinates constant. Appendix A shows that this method reproduces the Lagrangian motion of the centroid for compressible
flows with second-order accuracy. These centroids are then used (together with updated volume fractions) as reference cen-
troids for the next material reconstruction step. The final material centroids are then set to the centroids of the reconstructed
polygons.

Our code incorporates several mesh-untangling and mesh-smoothing methods. All ALE examples in this paper use one
iteration of the classical Winslow mesh smoothing algorithm [26] performed in a Jacobi manner to avoid breaking the prob-
lem symmetry.

The last essential part of the ALE code is a remapping technique interpolating all fluid and material quantities between
Lagrangian and smoothed computational meshes. Our remapper employs the cell-cell or pure polygon-cell intersections and
exact integration in the entire mesh, performed in a flux form.

This flux-based remapper represents the multi-material extension of the technique described in [27] – it constructs
inward and outward fluxes of integrals of 1, x; y, and some higher order polynomials using overlays (intersections) of
Lagrangian cells (or pure material polygons in the case of mixed cells) with their neighbors in the smoothed mesh, and
vice versa. Note that these integrals of polynomials over polygons can be computed analytically. Fluxes of all cell- and
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Fig. 5. Materials of triple point problem simulation, time T ¼ 0:1. Eulerian runs (as Lagrangian step and remap to the initial orthogonal mesh) using
different methods for material reconstruction are shown: global view on the entire computational domain for MOF method, and zooms to the three material
junction for Youngs’ VOF method (with different material orderings), MOF, and Power Diagram based methods are shown.
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material-centered quantities are then constructed from these pre-computed exchange integrals, the material quantities
(mass, internal energy) are remapped in a material-by-material way. They are also used for remapping material volumes
(and consequently volume fractions) and centroids in a flux form. For remapping nodal mass, we need to construct inter-
nodal mass fluxes, which we interpolate from inter-cell mass fluxes as described in [28], extended by split side fluxes for
adjacent cells and corner fluxes. All nodal quantities are then remapped by attaching them to these inter-nodal mass
fluxes (for example, the momentum fluxes are obtained by multiplication of the mass fluxes by an interpolated flux
velocity). This approach allows us to construct two kinetic energies at each node – conservative kinetic energy obtained
by its remap, and non-conservative kinetic energy obtained from remapped velocities. This kinetic energy discrepancy is
resolved by a standard energy fix [1], it is redistributed into the remapped internal energy of adjacent materials, and thus
global energy conservation is guaranteed. For a complete detailed description of our multi-material remapping method,
see [29].

The material reconstruction method is performed at the end of the Lagrangian stage, during the centroid update process.
This whole step can be avoided when VOF type of method is used, and no centroid information is required. The second part of
the ALE algorithm employing the material reconstruction method is the beginning of the remapping stage, during the com-
putation of the material exchange integrals, and can also be reused during the slope (of density or internal energy) limiting.
This material reconstruction must be performed in every remapping step, independent of the reconstruction method used, or
the data from the Lagrangian step reconstruction can be reused, if it was performed.
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6. Numerical examples

We demonstrate the properties of the described material reconstruction methods in the context of multi-material ALE
hydrocode for three types of problems. These are: a triple point problem containing a strong vortex in its solution, a mul-
ti-material modification of the Sedov problem representing a material expansion (and thus its narrowing) due to a point
explosion, and finally a multi-material modification of Saltzman problem employing the interaction of the piston-generated
shock wave with a multi-material structure. These three problems represent a wide range of processes involved in real com-
plex numerical hydro simulations. In our comparison, we focus especially on the material topology (relative position of the
materials) and on how well the thin material filaments are resolved.

6.1. Triple point problem

The initial data for the triple point problem [30] is shown in Fig. 4. The computational domain has a rectangular shape
with 7 � 3 edge ratio. In all simulations, we use an equispaced orthogonal initial computational mesh with 140 � 60 cells.
It includes three materials at rest, initially forming a T-junction. The high-pressure material (in light red or white) creates a
shock wave moving to the right, through the low pressure blue (or darkest gray) and green (medium gray) materials. Due to
different material properties, it moves faster in the blue or dark gray (lower density) material, and therefore a vortex evolves
around the triple point. In the later stages of the simulation (final time T ¼ 5), we can observe thin filaments of materials
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Fig. 6. Materials of triple point problem simulation, time T ¼ 2:5. Eulerian runs (as Lagrangian step and remap to the initial orthogonal mesh) using
different methods for material reconstruction are shown: global view on the entire computational domain for MOF method, and zooms to the three material
junction for Youngs’ VOF method (with different material orderings), MOF, and Power Diagram based methods are shown.



M. Kucharik et al. / Journal of Computational Physics 229 (2010) 2432–2452 2439
rotating around the vortex. It is to be noted that no mixed cells are present at the beginning of the simulations, however, they
appear during the first remap.

Here, we compare a traditional gradient-based VOF method with different orderings, the MOF method, and a VOF method
based on power diagrams (VOF-PD). We perform the comparison for two types of simulations: Eulerian and full ALE. In the
Eulerian approach, the solution is remapped back to the orthogonal initial mesh after each Lagrangian step, while in the ALE
approach, Winslow mesh smoothing and consecutive remapping is performed after every 20 Lagrangian steps.

In Fig. 5, we can see the first snapshot of the Eulerian simulation, corresponding to time T ¼ 0:1. In this early moment, the
white–blue interface is shifted more to the right than the white–green one. As we can see, smooth interfaces are preserved
when using VOF starting with white material, which is the correct local material ordering for this particular problem, and
when using the MOF method. The VOF with Power diagrams still provide acceptable results, while VOF methods using wrong
orderings created very distorted interfaces leading to problems in later stages of the simulation.

A snapshot in the middle of the simulation ðT ¼ 2:5Þ is shown in Fig. 6. A thin filament of green material is starting to
develop, which is reasonably resolved using MOF and VOF with the correct ordering. VOF with power diagrams keeps the
correct topology of materials, but starts to have problems with resolving the thin filament. VOF with the wrong material
orderings provides the worst results – the filament starts to separate from the heavy blue material, and there are small pieces
of white material between green and blue that are not easily visible at this scale.
0 2 4 6
0

1

2

3

4.3 4.4 4.5 4.6 4.71.4

1.5

1.6

1.7

1.8

4.3 4.4 4.5 4.6 4.71.4

1.5

1.6

1.7

1.8

4.3 4.4 4.5 4.6 4.71.4

1.5

1.6

1.7

1.8

4.3 4.4 4.5 4.6 4.71.4

1.5

1.6

1.7

1.8

4.3 4.4 4.5 4.6 4.71.4

1.5

1.6

1.7

1.8

Fig. 7. Materials of triple point problem simulation, time T ¼ 5:0. Eulerian runs (as Lagrangian step and remap to the initial orthogonal mesh) using
different methods for material reconstruction are shown: global view on the entire computational domain for MOF method, and zooms to the three material
junction for Youngs’ VOF method (with different material orderings), MOF, and Power Diagram based methods are shown.



2440 M. Kucharik et al. / Journal of Computational Physics 229 (2010) 2432–2452
In Fig. 7, we can see the final snapshot of the Eulerian simulation corresponding to time T ¼ 5. Again, MOF and VOF in the
correct ordering resolve the thin part of the green filament reasonably well. VOF with the wrong material orderings give us
unacceptable results – filament transforms into a drip separating from the blue material, and there are many tiny droplets of
white material between the blue and green materials VOF with power diagrams also do not succeed in resolving the thin part
of the filament, but the result is qualitatively better: the material topology is correct, no droplets appear, and green material
stays attached to the blue one.

In the next set of figures, the results of the same problem obtained by ALE approach are presented. Generally, the results
are worse than for the Eulerian simulations due to the distorted computational mesh.

In Fig. 8, the early stages of an ALE simulation at time T ¼ 0:1 are presented for the same example. As we can see, the MOF
results are best of all methods being compared, the multi-material interface smoothly transitions from the white–blue to the
white–green interface and no major jumps appear. The results of VOF in correct ordering are comparable to the results of
VOF with power diagrams at this early stage. We can observe minor material jumps and smoothness of the interface is vio-
lated. The worst results are clearly obtained by VOF methods using the wrong material orderings. The T-shape of the inter-
face is completely violated and an unphysical wedge of white material starts to separate blue and green materials, leading to
more severe problems in later stages of the simulations.

Fig. 9 presents results in the middle of the simulation ðT ¼ 2:5Þ. In this time moment, the (initially orthogonal) compu-
tational mesh is already relatively distorted. As we can see, VOF in correct ordering resolves the longest green filament.
Filament resolved by MOF is shorter, compact, with a relatively smooth interface. Power diagrams and VOF with wrong
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Fig. 8. Materials of triple point problem simulation, time T ¼ 0:1. ALE runs (as Lagrangian step and remap to the Winslow smoothed mesh after every 20
Lagrangian steps) using different methods for material reconstruction are shown: global view on the entire computational domain for MOF method, and
zooms to the three material junction for Youngs’ VOF method (with different material orderings), MOF, and Power Diagram based methods are shown.
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material orderings do not resolve the filament very well, but power diagrams surpass VOF with incorrect material order in
material topology – no fragment of white and blue material appear on the other side of the green filament.

In Fig. 10, we can see the last moment ðT ¼ 5Þ of the ALE simulation.
MOF provides best result again – the filament is compact, relatively smooth, no separated tiny droplets are present. We

can observe such small pieces for all VOF methods, even for correct ordering, where a tiny thin fiber of green material sep-
arates white–blue interface upto the picture boundary (zoomed in the last image of Fig. 10). As for power diagrams, no drop-
lets appear, but we can see that the green filament has broken into two parts.

6.2. Multi-material Sedov problem

The second numerical problem we present here is a multi-material generalization of the well known Sedov problem [31].
Typically, only one quarter of the Sedov problem is solved in the domain h0;1:1i2, final time of the simulation is T ¼ 1. The

standard Sedov problem has a uniform density q ¼ 1, pressure p ¼ 10�6, and ratio of specific heats c ¼ 1:4, the fluid is static.
A high energy cell in the domain origin is set, causing an explosion generating a strong circular shock wave spreading from
the origin.

In our modification, we paint 4 materials over the Cartesian computational mesh containing 322 cells in the domain, as
shown in Fig. 11. The material interfaces are placed at radiuses r ¼ 0:1; r ¼ 0:2, and r ¼ 0:3. The central material A represents
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Fig. 9. Materials of triple point problem simulation, time T ¼ 2:5. ALE runs (as Lagrangian step and remap to the Winslow smoothed mesh after every 20
Lagrangian steps) using different methods for material reconstruction are shown: global view on the entire computational domain for MOF method, and
zooms to the three material junction for Youngs’ VOF method (with different material orderings), MOF, and Power Diagram based methods are shown.
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produces the worst results, and the blue ring B is broken at several places. As we can see, the severest material displacement
is present at domain boundaries due to the distortion of the volume fraction gradient here. Although, we can also observe
fragments of the green material between the red and blue ones along the whole blue ring. For MOF, the blue ring stays com-
pact with smooth interfaces. For this problem, the results obtained by the Power Diagrams based VOF method are compa-
rable to MOF results, with the exception of the inner material interface disturbances close to the domain boundary. These are
again caused by the computation of the volume fraction gradient. Let us note, that the circular shock wave position is the
same and is not influenced by the particular material reconstruction method.

6.3. Multi-material Saltzman-like problem

The last problem we are going to discuss here is a modification of a standard Saltzman piston problem [32]. We use an
orthogonal Cartesian 100 � 10 computational mesh in the computational domain h�0:5;0:5i � h�0:05;0:05i. The standard
Saltzman problem contains a uniform distribution of material density q ¼ 1 and pressure p ¼ 2=3 � 10�4 in the whole
domain. The fluid is static and the ratio of specific heats is c ¼ 5=3. After the beginning of the simulation, the whole
computational domain is compressed by a piston moving the left boundary with the unit velocity. As the simulations goes,
a shock wave is formed in front of the piston, which passes the whole domain and reflects from the right boundary. It is pos-
sible to perform this simulation until quite a long time, when the shock wave reflects several times from the left and right
boundaries. Let us note, that in time T ¼ 1, the whole domain would be compressed to the 0 width, so this time is not reach-
able. This problem is often used for the investigation of the properties of Lagrangian solvers, especially when used in con-
nection with an initially skewed computational mesh.

In our modification, we have placed several rings of different materials to the center of the computational domain, as can
be seen in Fig. 13. The radiuses of the material interfaces are set to r ¼ 0:02; r ¼ 0:027, and r ¼ 0:03. This problem is multi-
material only formally, the fluid quantities of all materials are set to the same values as mentioned above. Therefore, the
solution should exactly correspond to the 1D symmetric solution of the single-material problem.

In Fig. 14, we can see the comparison of the Youngs’ VOF, VOF-PD, and MOF material reconstruction methods applied to
the initial data of the described problem. For the Youngs’ VOF methods, the ABCD material ordering was used, considered to
the correct ordering for layered structures. The problem uses 100 � 10, 200 � 20, 400 � 40, and 800 � 80 mesh resolutions,
in the images a zoom of the ring region is shown. For the lowest resolution, the problem is clearly under-resolved. We can
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Fig. 11. Initial placement of materials for the multi-material Sedov problem painted onto a Cartesian 322 mesh. The material interfaces are placed at
radiuses r ¼ 0:1; r ¼ 0:2, and r ¼ 0:3.
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observe severe distortions of the green ring due to inaccurate gradient computation. The gradient is computed by
the Green–Gauss approach, and the stencil of the surrounding cells including the green material is not big enough for the -
filament structure to resolve the gradient accurately. We can even see pieces of the green material between the light-red and
blue materials. The VOF-PD and MOF methods keep the material topology correctly, but the MOF method produces much
smoother interfaces. The reason for non-smooth VOF-PD interfaces are the same as for the Youngs’ VOF method – inaccurate
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Fig. 15. Multi-material Saltzman problem in time T ¼ 0 on a Cartesian 400 � 40 mesh. The computational mesh and material polygons reconstructed by the
VOF reconstruction method are shown. Zoom shows fragments of the magenta material.
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Fig. 16. Multi-material Saltzman problem in time T ¼ 0:6 on a Cartesian 100 � 10 mesh obtained by the ALE1 simulation (Winslow mesh smoothing
followed by the quantity remapping is performed after every single Lagrangian step). The computational mesh and material polygons reconstructed by the
MOF reconstruction method are shown.
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of VOF method. This can be seen in the zoom shown in Fig. 15. Finally, for the highest resolution mesh 800 � 80, all material
features are at least 3 cells wide and all methods provide comparable results with smooth interfaces and correct material
topology.

Let us also note, that the problems with the Y